Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations,R-(+)- orS-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures betweenR- andS-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.more » « less
-
Abstract With power conversion efficiencies now exceeding 25%, hybrid perovskite solar cells require deeper understanding of defects and processing to further approach the Shockley‐Queisser limit. One approach for processing enhancement and defect reduction involves additive engineering—, e.g., addition of MASCN (MA = methylammonium) and excess PbI2have been shown to modify film grain structure and improve performance. However, the underlying impact of these additives on transport and recombination properties remains to be fully elucidated. In this study, a newly developed carrier‐resolved photo‐Hall (CRPH) characterization technique is used that gives access to both majority and minority carrier properties within the same sample and over a wide range of illumination conditions. CRPH measurements on n‐type MAPbI3films reveal an order of magnitude increase in carrier recombination lifetime and electron density for 5% excess PbI2added to the precursor solution, with little change noted in electron and hole mobility values. Grain size variation (120–2100 nm) and MASCN addition induce no significant change in carrier‐related parameters considered, highlighting the benign nature of the grain boundaries and that excess PbI2must predominantly passivate bulk defects rather than defects situated at grain boundaries. This study offers a unique picture of additive impact on MAPbI3optoelectronic properties as elucidated by the new CRPH approach.more » « less
-
Abstract Electron–phonon interactions play an essential role in charge transport and transfer processes in semiconductors. For most structures, tailoring electron–phonon interactions for specific functionality remains elusive. Here, it is shown that, in hybrid perovskites, coherent phonon modes can be used to manipulate charge transfer. In the 2D double perovskite, (AE2T)2AgBiI8(AE2T: 5,5“‐diylbis(amino‐ethyl)‐(2,2”‐(2)thiophene)), the valence band maximum derived from the [Ag0.5Bi0.5I4]2–framework lies in close proximity to the AE2T‐derived HOMO level, thereby forming a type‐II heterostructure. During transient absorption spectroscopy, pulsed excitation creates sustained coherent phonon modes, which periodically modulate the associated electronic levels. Thus, the energy offset at the organic–inorganic interface also oscillates periodically, providing a unique opportunity for modulation of interfacial charge transfer. Density‐functional theory corroborates the mechanism and identifies specific phonon modes as likely drivers of the coherent charge transfer. These observations are a striking example of how electron–phonon interactions can be used to manipulate fundamentally important charge and energy transfer processes in hybrid perovskites.more » « less
-
Abstract Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye‐sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi‐junction PVs. Nevertheless, it can be very time consuming to find or develop an up‐to‐date overview of the state‐of‐the‐art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state‐of‐the‐art emerging PVs.more » « less
An official website of the United States government
